

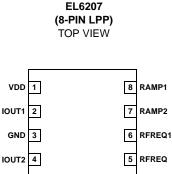
EL6207

Data Sheet

October 10, 2002

Dual Laser Driver Oscillator

The EL6207 is a dual push-pull oscillator used to reduce laser noise. It is optimized for 350MHz operation,


allowing reduced concern for harmonic EMI. It uses the standard interface to existing ROM controllers. The frequency and amplitude are each set with a separate resistor connected to ground, for each output. The tiny package and harmonic reduction allow the part to be placed close to a laser with low RF emissions.

If the voltage at both I_{OUT} pins is less than 1.0V, the chip will be powered down and not oscillate. If the voltage at either I_{OUT} pin is above 1.4V, the chip will be powered up and oscillating. If both I_{OUT} pins are above 1.4V, the chip will also be powered down, and not oscillate.

The current drawn by the oscillator consists of a small utility current, plus the peak oscillator amplitude in the positive cycle, which is routed to the enabled I_{OUT} pin. In the negative cycle the oscillator subtracts peak oscillator amplitude from the laser APC current.

The part operates from a single 5V supply, and is specified for operation from 0° C to +85°C.

Pinout

Features

- · Low power dissipation
- User-selectable frequency from 100MHz to 600MHz controlled with a single resistor for each laser
- User-specified amplitude from 10mA_{PK-PK} to 100mA_{PK} controlled with a single resistor for each output
- Auto turn-off threshold
- Soft edges for reduced EMI
- Small 8-pin LPP package

Applications

· Combi drive using dual laser

Ordering Information

PART NUMBER	PACKAGE	TAPE & REEL	PKG. NO.
EL6207CL	8-Pin LPP	-	MDP0047

Absolute Maximum Ratings (T_A = 25°C)

Voltages Applied to:

tages Applied to:	Operating Ambient Temperature Range 0°C to +85°C
V _{DD}	Maximum Die Temperature+150°C
I _{OUT}	Storage Temperature Range65°C to +150°C
R _{FREQ} , R _{AMP}	I _{OUT} Current
	Power Dissipation (maximum) See Curves

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

Supply & Reference Voltage Characteristics V_{DD} = +5V, T_A = 25°C, R_L = 10 Ω , R_{FREQ} = 5210 Ω (FREQ = 360MHz), R_{AMP} = 2540Ω (Amp = 50mA_{P-P} measured at 95MHz), V_{OUT} = 2.2V (One channel active)

	n					
PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
PSOR	Power Supply Operating Range		4.5		5.5	V
I _{SO}	Supply Current Disabled	V_{OUT1} and V_{OUT2} < 1.3V		550	750	μA
I _{STYP}	Supply Current Typical Conditions	R_{FREQ} = 5.21k $\Omega,$ R_{AMP} = 2.54k $\Omega,$ V_{OUT1} or V_{OUT2} >1.4V		17	22	mA
I _{SLO}	Supply Current Low Conditions	R_{FREQ} = 18.2k Ω , R_{AMP} = 13k Ω , V_{OUT1} or V_{OUT2} >1.4V		6		mA
I _{SHI}	Supply Current High Conditions	$R_{FREQ} = 3.05 k\Omega$, $R_{AMP} = 1.3 k\Omega$, V_{OUT1} or $V_{OUT2} > 1.4$		32		mA
VCUTOFF	Output Cutoff Voltage	Average voltage at cutoff	1.1		1.4	V
V _{FREQ}	Voltage at R _{FREQ} Pin			1.27		V
V _{RAMP}	Voltage on R _{AMP} Pin			1.27		V

Oscillator Characteristics

 V_{DD} = +5V, T_A = 25°C, R_L = 10 Ω , R_{FREQ} = 5210 Ω (FREQ = 360MHz), R_{AMP} = 2540 Ω (Amp = 50mAp-p measured at 100MHz), V_{OUT} = 2.2V (One channel active)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	ТҮР	MAX	UNIT
Fosc	Frequency Tolerance	Unit-unit frequency variation	310	360	410	MHz
F _{HIGH}	Frequency Range High	$R_{FREQ} = 3.0 k\Omega$		600		MHz
F _{LOW}	Frequency Range Low	$R_{FREQ} = 18.2 k\Omega$		100		MHz
TC _{OSC}	Frequency Temperature Sensitivity	-40°C to +85°C ambient		50		ppm/°C
PSRR _{OSC}	Frequency Change ∆F/F	V _{DD} from 4.5V to 5.5V		1		%

Driver Characteristics

 V_{DD} = +5V, T_A = 25°C, R_L = 10 Ω , R_{FREQ} = 18.2k Ω (FREQ = 100MHz), R_{AMP} = 2540 Ω (Amp = 50mA_{P-P} measured at 100MHz), V_{OUT} = 2.2V (One channel active)

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
AMP _{HIGH}	Amplitude Range High	R _{AMP} = 1.27kΩ		100		mA _{P-P}
AMPLOW	Amplitude Range Low	R _{AMP} = 12.7kΩ		10		mA _{P-P}
IOFF _{NOM}	Average Output Current @ 2.2V	R_{FREQ} = 5210 Ω , 10 Ω load, V_{OUT} = 2.2V		-4		mA
IOFF _{HIGH}	Average Output Current @ 2.8V	$R_{FREQ} = 5210\Omega$, 10Ω load, $V_{OUT} = 3.0V$		-4.8		mA
IOFF _{LOW}	Average Output Current @ 1.8V	$R_{FREQ} = 5210\Omega$, 10Ω load, $V_{OUT} = 1.8V$		-3.5		mA
I _{OUTP-P}	Output Current Tolerance	Defined as on standard deviation		2		%
Duty Cycle	Output Push Time/Cycle Time	R _{FREQ} = 5210Ω		43		%
PSRR _{AMP}	Amplitude Change of Output ∆I/I	V _{DD} from 4.5V to 5.5V		-54		dB

2

Driver Characteristics

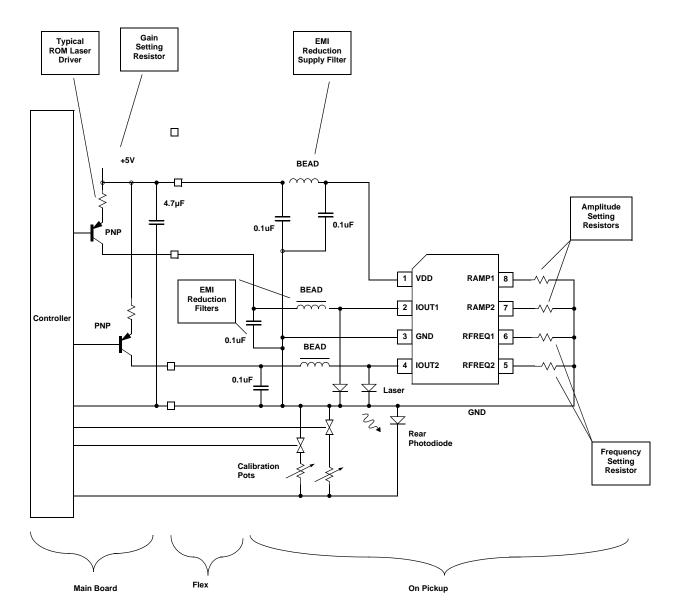
 V_{DD} = +5V, T_A = 25°C, R_L = 10 Ω , R_{FREQ} = 18.2k Ω (FREQ = 100MHz), R_{AMP} = 2540 Ω (Amp = 50mA_{P-P} measured at 100MHz), V_{OUT} = 2.2V (One channel active) **(Continued)**

PARAMETER	DESCRIPTION	CONDITIONS	MIN	TYP	MAX	UNIT
T _{ON}	Auto Turn-on Time	Output voltage step from 0V to 2.2V		15		μs
T _{OFF}	Auto Turn-off Time	Output voltage step from 2.2V to 0V		0.5		μs
IN _{OUT}	IOUT Current Output Noise Density	$R_{FREQ} = 5210\Omega, F_{MEASURE} = 10MHz$		2.5		nA/√Hz

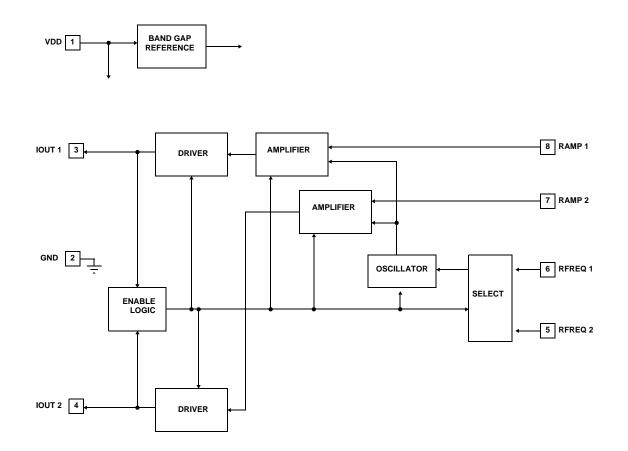
Pin Descriptions

PIN NAME	PIN TYPE	PIN DESCRIPTION
1	V _{DD}	Positive power for laser driver (4.5V - 5.5V)
2	IOUT1	Current output to laser anode
3	GND	Chip ground pin (0V)
4	IOUT1	Current output to laser anode
5	RFREQ2	Set pin for oscillator frequency
6	RFREQ1	Set pin for oscillator frequency
7	RAMP2	Amplitude control input pin
8	RAMP1	Amplitude control input pin

Recommended Operating Conditions


V _{DD} 5V ±10%	
V _{OUT}	
R_{FREQ}	

R _{AMP}	 (min)
F _{OSC}	 MHz
AOSC	 K-PK


I_{OUT} Control

V _{OUT1}	V _{OUT2}	Ιουτ	Ιουτ
Less than V _{CUTOFF}	Less than V _{CUTOFF}	OFF	OFF
Less than V _{CUTOFF}	More than V _{CUTOFF}	OFF	Normal Operation
More than V _{CUTOFF}	Less than V _{CUTOFF}	Normal Operation	OFF
More than V _{CUTOFF}	More than V _{CUTOFF}	OFF	OFF

Block Diagram

Block Diagram (Continued)

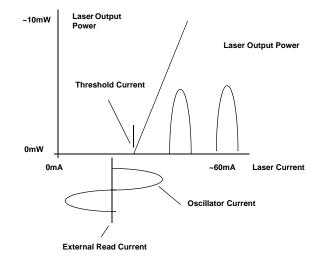
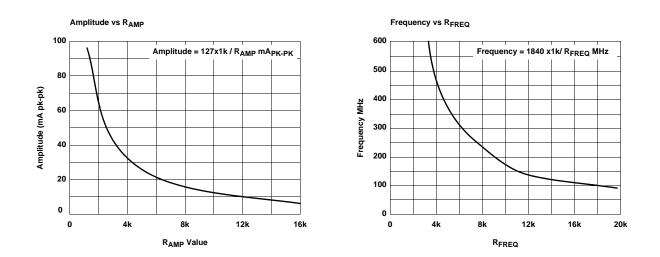



FIGURE 1.

6

Applications Information

Theory of Operation

A typical semiconductor laser will emit a small amount of incoherent light at low values of forward laser current. But after the threshold current is reached, the laser will emit coherent light. Further increases in forward current will cause rapid increases in laser output power. A typical threshold current is 30mA and a typical slope efficiency is 0.7mW/mA.

When the laser is lasing, it will often change its mode of operation slightly, due to changes in current, temperature, or optical feedback into the laser. In a DVD-ROM, the optical feedback from the moving disk forms a significant noise factor due to feedback induced mode hopping.

In addition to the mode hopping noise, a diode laser will typically have a noise level above threshold that is almost constant regardless of the power level. The signal-to-noise ratio of the output power can be defined by the DC power level divided by the laser noise power. Because of the almost constant noise power above threshold, higher level of output power have higher SNR (signal-to-noise ratio).

The RF oscillator is designed to produce a low noise oscillating current that is added to the external DC current. The effect of the AC current is to cause the laser power to change at twice the oscillator frequency. This changing power level causes the laser to go through rapid mode hopping. The low frequency component of laser power noise due to mode hoping is translated up to sidebands around the oscillator frequency by this action. Since the oscillator frequency can be filtered out of the low frequency read and servo channels, the net result is that the laser noise seems to be reduced.

The second source of laser noise reduction is caused by the increase in the laser power above the average laser power during the on cycle. The SNR is better at higher laser powers. In addition, when the laser is off, the noise is also very low.

Setting the RAMP Resistor

The laser should always have a forward current during operation. This will prevent the laser voltage from collapsing, and ensure that the high frequency components reach the junction without having to charge the junction capacitance. By looking at Figure 1, it can be seen that the applied DC current should be larger than the peak oscillator current. Generally it is desirable to make the oscillator current as large as possible to obtain the greatest reduction in laser noise. But it is not a trivial matter to determine this critical value. The amplitude depends on the waveshape of the oscillator current reaching the laser junction.

If the output current is sinusoidal, and the components in the output circuit are fixed and linear, then the shape of the current will be sinusoidal. But the amount of current reaching the laser junction is a function of the circuit parasitics. Also, the amount of junction current causing laser emission is variable with frequency due to the junction capacitance. But even this easy case is not available because the output impedance of the oscillator changes somewhat with output voltage.

In conclusion, the size of the R_{AMP} resistor must be determined experimentally. But, a good starting point is to use a peak amplitude that is less than the minimum laser threshold current.

All Intersil U.S. products are manufactured, assembled and tested utilizing ISO9000 quality systems. Intersil Corporation's quality certifications can be viewed at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

